Hi
I’m having an issue where streaming PCM audio data as chunks received as the response from an API call is causing high amounts of static noise which I’m assuming is between each chunk, as I’m still able to hear the audio played in the “background”. If possible I also want to have a better understanding of when the stream is finished also somehow, but not sure how to do it yet.
I’ve tried streaming the entire response after all chunks have been generated from the API and it works nicely playing them through i2s.
I’ve also experimented with various buffer sizes, and dma_buf_count
and dma_buf_length
.
Here is my code for reference:
#include <driver/i2s.h>
#include <WiFi.h>
#include <HTTPClient.h>
// WiFi credentials
const char *ssid = "Internett";
const char *password = "Simato21";
#define SAMPLE_RATE 8000U
#define SAMPLE_BITS 16
#define MAX_RECORD_TIME 60 // Maximum record time in seconds
#define BUTTON_PIN 4 // Button connected to pin 4
#define WAV_HEADER_SIZE 44
#define I2S_DOUT 9
#define I2S_BCLK 8
#define I2S_LRC 7
// Adjust the buffer size to accommodate maximum recording time
#define MAX_AUDIO_BUFFER_SIZE (SAMPLE_RATE * SAMPLE_BITS / 8 * MAX_RECORD_TIME + WAV_HEADER_SIZE)
HTTPClient http;
uint8_t *audioBuffer = nullptr;
bool isRecording = false;
bool sendPostFlag = false;
bool requestSwitchToRxMode = false;
unsigned long lastDebounceTime = 0;
const unsigned long debounceDelay = 100;
size_t audioBufferIndex = 0;
QueueHandle_t xQueue;
unsigned long inactivityTimeout = 10000; // in milliseconds
unsigned long lastDataTime = millis();
// Function prototypes
void setup_wifi();
void setup_button();
void setup_i2s(i2s_mode_t mode);
void switch_i2s_mode(i2s_mode_t mode);
void IRAM_ATTR button_isr_handler();
void record_audio_task(void *param);
void send_audio_data(uint8_t *data, size_t length);
void generate_wav_header(uint8_t *wav_header, uint32_t wav_size, uint32_t sample_rate);
void setup() {
Serial.begin(115200);
while (!Serial)
;
audioBuffer = (uint8_t *)ps_malloc(MAX_AUDIO_BUFFER_SIZE);
if (audioBuffer == nullptr) {
Serial.println("Failed to allocate memory for audio buffer");
return;
}
setup_wifi();
setup_button();
setup_i2s_tx();
setup_i2s_rx();
xQueue = xQueueCreate(10, sizeof(bool));
xTaskCreate(record_audio_task, "RecordAudioTask", 16384, NULL, 1, NULL);
}
void loop() {
}
void setup_wifi() {
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.println("Connecting to WiFi...");
}
Serial.println("Connected to WiFi");
}
void setup_button() {
pinMode(BUTTON_PIN, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(BUTTON_PIN), button_isr_handler, CHANGE);
}
void setup_i2s_tx() {
i2s_config_t i2s_config = {
.mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_TX ),
.sample_rate = 16000,
.bits_per_sample = I2S_BITS_PER_SAMPLE_16BIT,
.channel_format = I2S_CHANNEL_FMT_ONLY_LEFT,
.communication_format = I2S_COMM_FORMAT_STAND_PCM_SHORT,
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1,
.dma_buf_count = 50,
.dma_buf_len = 1024,
.use_apll = true,
.tx_desc_auto_clear = true,
.fixed_mclk = 0
};
i2s_pin_config_t pin_config = {
.bck_io_num = I2S_BCLK,
.ws_io_num = I2S_LRC,
.data_out_num = I2S_DOUT,
.data_in_num = -1 // Not used
};
i2s_driver_install((i2s_port_t)1, &i2s_config, 0, NULL);
i2s_set_pin((i2s_port_t)1, &pin_config);
i2s_zero_dma_buffer((i2s_port_t)1);
}
void setup_i2s_rx() {
i2s_config_t i2s_config = {
.mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_PDM| I2S_MODE_RX),
.sample_rate = SAMPLE_RATE,
.bits_per_sample = I2S_BITS_PER_SAMPLE_16BIT,
.channel_format = I2S_CHANNEL_FMT_ONLY_LEFT,
.communication_format = I2S_COMM_FORMAT_STAND_I2S,
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1,
.dma_buf_count = 8,
.dma_buf_len = 1024,
.use_apll = false,
.tx_desc_auto_clear = true, // Only applicable in TX mode
.fixed_mclk = 0
};
i2s_pin_config_t pin_config = {
.bck_io_num = -1, // Not used
.ws_io_num = 42, // IIS_LCLK for microphone
.data_out_num = -1, // Not used
.data_in_num = 41 // IIS_DOUT for microphone
};
// Uninstall the existing driver before setting a new configuration
i2s_driver_install((i2s_port_t)0, &i2s_config, 0, NULL);
i2s_set_pin((i2s_port_t)0, &pin_config);
i2s_zero_dma_buffer((i2s_port_t)0);
}
void IRAM_ATTR button_isr_handler() {
unsigned long interruptTime = millis();
if (interruptTime - lastDebounceTime > debounceDelay) {
bool currentButtonState = digitalRead(BUTTON_PIN) == LOW;
if (currentButtonState != isRecording) {
isRecording = currentButtonState;
lastDebounceTime = interruptTime;
if (isRecording) {
requestSwitchToRxMode = true; // Request to switch to RX mode
}
xQueueSendFromISR(xQueue, &isRecording, NULL);
}
}
}
void record_audio_task(void *param) {
bool shouldRecord = false;
bool currentlyRecording = false;
Serial.println("Record audio task started.");
while (true) {
// Check for recording state updates
while (xQueueReceive(xQueue, &shouldRecord, 0) == pdTRUE) {
if (shouldRecord && !currentlyRecording) {
currentlyRecording = true;
Serial.println("Starting recording...");
audioBufferIndex = WAV_HEADER_SIZE; // Reset index for new recording
} else if (!shouldRecord && currentlyRecording) {
currentlyRecording = false;
Serial.println("Stopping recording.");
// Update WAV header and prepare to send data
generate_wav_header(audioBuffer, audioBufferIndex - WAV_HEADER_SIZE, SAMPLE_RATE);
sendPostFlag = true;
}
}
if (currentlyRecording) {
size_t bytesRead = 0;
TickType_t i2sReadTimeoutTicks = 1; // 1 tick timeout for minimal blocking
// Attempt to read audio data from I2S with minimal blocking
esp_err_t result = i2s_read((i2s_port_t)0, audioBuffer + audioBufferIndex, MAX_AUDIO_BUFFER_SIZE - audioBufferIndex, &bytesRead, i2sReadTimeoutTicks);
if (result == ESP_OK && bytesRead > 0) {
audioBufferIndex += bytesRead;
// Check for buffer overflow
if (audioBufferIndex >= MAX_AUDIO_BUFFER_SIZE) {
currentlyRecording = false;
Serial.println("Max recording length reached, stopping recording.");
// Update WAV header with actual data siz e and prepare to send data
generate_wav_header(audioBuffer, audioBufferIndex - WAV_HEADER_SIZE, SAMPLE_RATE);
sendPostFlag = true; // Set flag to indicate data is ready to be sent
}
}
// Immediately check the queue again to see if recording should stop
if (xQueueReceive(xQueue, &shouldRecord, 0) == pdTRUE && !shouldRecord) {
currentlyRecording = false;
Serial.println("Stopping recording via queue message.");
generate_wav_header(audioBuffer, audioBufferIndex - WAV_HEADER_SIZE, SAMPLE_RATE);
sendPostFlag = true; // Prepare to send data
}
// Use a short delay to yield to other tasks
vTaskDelay(1 / portTICK_PERIOD_MS);
} else {
// If not recording, check less frequently
vTaskDelay(10 / portTICK_PERIOD_MS);
}
// Check if the audio data is ready to be sent
if (sendPostFlag) {
send_audio_data(audioBuffer, audioBufferIndex); // Send the recorded audio data
audioBufferIndex = WAV_HEADER_SIZE; // Reset index for the next recording
sendPostFlag = false; // Reset the flag
}
}
}
void send_audio_data(uint8_t *data, size_t length) {
if (WiFi.status() != WL_CONNECTED) {
Serial.println("Not connected to WiFi");
return;
}
HTTPClient http;
int httpResponseCode;
// Only Request: Send audio data to /api/complete
http.begin("http://192.168.1.137:8000/api/complete"); // Adjusted endpoint
http.addHeader("Content-Type", "audio/wav");
http.setTimeout(30000); // Long timeout for potential audio processing
Serial.println("Sending audio data to /api/complete...");
httpResponseCode = http.POST(data, length);
if (httpResponseCode != 200) {
Serial.print("Error on sending POST to /api/complete: ");
Serial.println(httpResponseCode);
http.end();
return;
}
// Stream the audio response directly
WiFiClient *stream = http.getStreamPtr();
uint8_t *buffer = (uint8_t *)ps_malloc(1024); // Buffer size for audio data
if (buffer == nullptr) {
Serial.println("Failed to allocate memory for buffer");
http.end();
return;
}
memset(buffer, 0, 1024);
while (http.connected()) {
if (stream->available()) {
int bytesRead = stream->readBytes(buffer, 1024);
if (bytesRead > 0) {
size_t bytes_written = 0;
esp_err_t result = i2s_write((i2s_port_t)1, buffer, bytesRead, &bytes_written, portMAX_DELAY);
if (result != ESP_OK || bytes_written < bytesRead) {
Serial.println("Error writing to I2S or partial write occurred");
}
memset(buffer, 0, 1024);
}
}
}
http.end(); // End the HTTP connection
free(buffer); // Free the dynamically allocated buffer
}
void generate_wav_header(uint8_t *wav_header, uint32_t wav_size, uint32_t sample_rate) {
uint32_t file_size = wav_size + WAV_HEADER_SIZE - 8;
uint32_t byte_rate = SAMPLE_RATE * SAMPLE_BITS / 8;
const uint8_t set_wav_header[] = {
'R', 'I', 'F', 'F', // ChunkID
file_size, file_size >> 8, file_size >> 16, file_size >> 24, // ChunkSize
'W', 'A', 'V', 'E', // Format
'f', 'm', 't', ' ', // Subchunk1ID
0x10, 0x00, 0x00, 0x00, // Subchunk1Size (16 for PCM)
0x01, 0x00, // AudioFormat (1 for PCM)
0x01, 0x00, // NumChannels (1 channel)
sample_rate, sample_rate >> 8, sample_rate >> 16, sample_rate >> 24, // SampleRate
byte_rate, byte_rate >> 8, byte_rate >> 16, byte_rate >> 24, // ByteRate
0x02, 0x00, // BlockAlign
0x10, 0x00, // BitsPerSample (16 bits)
'd', 'a', 't', 'a', // Subchunk2ID
wav_size, wav_size >> 8, wav_size >> 16, wav_size >> 24, // Subchunk2Size
};
memcpy(wav_header, set_wav_header, sizeof(set_wav_header));
}