Streaming audio chunks from API to XIAO esp32s3 with MAX98357 Amp

I got it working now! Switching between TX and RX setups solved the issue, although with some static crackle during the switch. Still would like to be able to “interrupt” the speech, and record over but currently that only leads to errors. The code is not pretty, but it works, so I’ll mark this as solved!

#include <driver/i2s.h>
#include <WiFi.h>
#include <HTTPClient.h>
#include <Audio.h>
#include <LittleFS.h>

// WiFi credentials
const char* ssid = "SSID";
const char* password = "PASSWORD";

#define SAMPLE_RATE        8000U
#define SAMPLE_BITS        16
#define MAX_RECORD_TIME    60  // Maximum record time in seconds
#define BUTTON_PIN         4   // Button connected to pin 4
#define WAV_HEADER_SIZE    44

#define I2S_DOUT  9
#define I2S_BCLK  8
#define I2S_LRC   7

Audio audio;

// Adjust the buffer size to accommodate maximum recording time
#define MAX_AUDIO_BUFFER_SIZE (SAMPLE_RATE * SAMPLE_BITS / 8 * MAX_RECORD_TIME + WAV_HEADER_SIZE)

HTTPClient http;
uint8_t *audioBuffer = nullptr;
bool isRecording = false;
bool sendPostFlag = false;
bool requestSwitchToRxMode = false;
unsigned long lastDebounceTime = 0;
const unsigned long debounceDelay = 100;
size_t audioBufferIndex = 0;
QueueHandle_t xQueue;

// Function prototypes
void setup_wifi();
void setup_button();
void setup_i2s(i2s_mode_t mode);
void switch_i2s_mode(i2s_mode_t mode);
void IRAM_ATTR button_isr_handler();
void record_audio_task(void *param);
void send_audio_data(uint8_t *data, size_t length);
void generate_wav_header(uint8_t *wav_header, uint32_t wav_size, uint32_t sample_rate);

void setup() {
  Serial.begin(115200);
  while (!Serial);

  audioBuffer = (uint8_t *)ps_malloc(MAX_AUDIO_BUFFER_SIZE);
  if (audioBuffer == nullptr) {
    Serial.println("Failed to allocate memory for audio buffer");
    return;
  }

  setup_wifi();
  setup_button();
  setup_i2s(I2S_MODE_RX);
  audio.setPinout(I2S_BCLK, I2S_LRC, I2S_DOUT);
  audio.setVolume(100);

  if (!LittleFS.begin(true)) {
    Serial.println("An error has occurred while mounting LittleFS");
    return;
  }

  xQueue = xQueueCreate(10, sizeof(bool));
  xTaskCreate(record_audio_task, "RecordAudioTask", 16384, NULL, 1, NULL);
}

void loop() {
  audio.loop();
}

void setup_wifi() {
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.println("Connecting to WiFi...");
  }
  Serial.println("Connected to WiFi");
}

void setup_button() {
    pinMode(BUTTON_PIN, INPUT_PULLUP);
    attachInterrupt(digitalPinToInterrupt(BUTTON_PIN), button_isr_handler, CHANGE);
}

void setup_i2s(i2s_mode_t mode) {

    i2s_config_t i2s_config; 

    if (mode & I2S_MODE_TX) {
        // Speaker pin configuration
        i2s_config  = {
            .mode                 = (i2s_mode_t)(I2S_MODE_MASTER | mode),
            .sample_rate          = 16000U,
            .bits_per_sample      = I2S_BITS_PER_SAMPLE_32BIT,
            .channel_format       = I2S_CHANNEL_FMT_ONLY_LEFT,
            .communication_format = I2S_COMM_FORMAT_STAND_I2S,
            .intr_alloc_flags     = ESP_INTR_FLAG_LEVEL1,
            .dma_buf_count        = 8,
            .dma_buf_len          = 512,
            .use_apll             = false,
            .tx_desc_auto_clear   = false,  // Only applicable in TX mode
            .fixed_mclk           = 0
        };
    } else if (mode & I2S_MODE_RX) {
        // Microphone pin configuration
        i2s_config  = {
            .mode                 = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_PDM | mode),
            .sample_rate          = SAMPLE_RATE,
            .bits_per_sample      = I2S_BITS_PER_SAMPLE_16BIT,
            .channel_format       = I2S_CHANNEL_FMT_ONLY_LEFT,
            .communication_format = I2S_COMM_FORMAT_STAND_I2S,
            .intr_alloc_flags     = ESP_INTR_FLAG_LEVEL1,
            .dma_buf_count        = 8,
            .dma_buf_len          = 512,
            .use_apll             = false,
            .tx_desc_auto_clear   = false,  // Only applicable in TX mode
            .fixed_mclk           = 0
        };
    }

    i2s_pin_config_t pin_config;

    if (mode & I2S_MODE_TX) {
        // Speaker pin configuration
        pin_config = {
            .bck_io_num = I2S_BCLK,
            .ws_io_num = I2S_LRC,
            .data_out_num = I2S_DOUT,
            .data_in_num = -1  // Not used
        };
    } else if (mode & I2S_MODE_RX) {
        // Microphone pin configuration
        pin_config = {
            .bck_io_num = -1,  // Not used
            .ws_io_num = 42,  // IIS_LCLK for microphone
            .data_out_num = -1,  // Not used
            .data_in_num = 41   // IIS_DOUT for microphone
        };
    }

    // Uninstall the existing driver before setting a new configuration
    i2s_driver_uninstall((i2s_port_t)0);
    i2s_driver_install((i2s_port_t)0, &i2s_config, 0, NULL);
    i2s_set_pin((i2s_port_t)0, &pin_config);
    i2s_zero_dma_buffer((i2s_port_t)0);
}


void IRAM_ATTR button_isr_handler() {
    unsigned long interruptTime = millis();
    if (interruptTime - lastDebounceTime > debounceDelay) {
        bool currentButtonState = digitalRead(BUTTON_PIN) == LOW;
        if (currentButtonState != isRecording) {
            isRecording = currentButtonState;
            lastDebounceTime = interruptTime;

            if (isRecording) {
                requestSwitchToRxMode = true; // Request to switch to RX mode
            }
            xQueueSendFromISR(xQueue, &isRecording, NULL);
        }
    }
}

void record_audio_task(void *param) {
    bool shouldRecord = false;
    bool currentlyRecording = false;
    Serial.println("Record audio task started.");

    while (true) {
        // Handle mode switching request outside ISR
        if (requestSwitchToRxMode) {
            setup_i2s(I2S_MODE_RX); // Perform the mode switching
            requestSwitchToRxMode = false; // Reset the request flag
        }

        // Check for recording state updates
        while (xQueueReceive(xQueue, &shouldRecord, 0) == pdTRUE) {
            if (shouldRecord && !currentlyRecording) {
                currentlyRecording = true;
                Serial.println("Starting recording...");
                audioBufferIndex = WAV_HEADER_SIZE;  // Reset index for new recording
            } else if (!shouldRecord && currentlyRecording) {
                currentlyRecording = false;
                Serial.println("Stopping recording.");
                setup_i2s(I2S_MODE_TX); // Switch back to TX mode after recording stops

                // Update WAV header and prepare to send data
                generate_wav_header(audioBuffer, audioBufferIndex - WAV_HEADER_SIZE, SAMPLE_RATE);
                sendPostFlag = true;
            }
        }

        if (currentlyRecording) {
            size_t bytesRead = 0;
            TickType_t i2sReadTimeoutTicks = 1;  // 1 tick timeout for minimal blocking

            // Attempt to read audio data from I2S with minimal blocking
            esp_err_t result = i2s_read((i2s_port_t)0, audioBuffer + audioBufferIndex, MAX_AUDIO_BUFFER_SIZE - audioBufferIndex, &bytesRead, i2sReadTimeoutTicks);

            if (result == ESP_OK && bytesRead > 0) {
                audioBufferIndex += bytesRead;
                // Check for buffer overflow
                if (audioBufferIndex >= MAX_AUDIO_BUFFER_SIZE) {
                    currentlyRecording = false;
                    Serial.println("Max recording length reached, stopping recording.");
                    // Update WAV header with actual data siz e and prepare to send data
                    generate_wav_header(audioBuffer, audioBufferIndex - WAV_HEADER_SIZE, SAMPLE_RATE);
                    sendPostFlag = true;  // Set flag to indicate data is ready to be sent
                }
            }

            // Immediately check the queue again to see if recording should stop
            if (xQueueReceive(xQueue, &shouldRecord, 0) == pdTRUE && !shouldRecord) {
                currentlyRecording = false;
                Serial.println("Stopping recording via queue message.");
                generate_wav_header(audioBuffer, audioBufferIndex - WAV_HEADER_SIZE, SAMPLE_RATE);
                sendPostFlag = true;  // Prepare to send data
            }

            // Use a short delay to yield to other tasks
            vTaskDelay(1 / portTICK_PERIOD_MS);
        } else {
            // If not recording, check less frequently
            vTaskDelay(10 / portTICK_PERIOD_MS);
        }

        // Check if the audio data is ready to be sent
        if (sendPostFlag) {
            send_audio_data(audioBuffer, audioBufferIndex);  // Send the recorded audio data
            audioBufferIndex = WAV_HEADER_SIZE;  // Reset index for the next recording
            sendPostFlag = false;  // Reset the flag
        }
    }
}

void send_audio_data(uint8_t *data, size_t length) {
  if (WiFi.status() == WL_CONNECTED) {
    if (!http.connected()) { // Only begin a new connection if not already connected
      // http.begin("https://audio-server.deno.dev/api/audio");
      http.begin("http://192.168.1.137:8000/api/audio");
      http.addHeader("Content-Type", "audio/wav");
    }

    http.setTimeout(30000); // Set timeout before the request
    Serial.println("Sending audio data...");
    int httpResponseCode = http.POST(data, length);
    setup_i2s(I2S_MODE_TX);

    if (httpResponseCode > 0) {
      if (LittleFS.exists("/response.mp3")) {
        LittleFS.remove("/response.mp3");
      }

      File file = LittleFS.open("/response.mp3", FILE_WRITE);
      if (!file) {
          Serial.println("Failed to open /response.mp3 for writing.");
          return; // Exit the function to avoid further errors
      }
      if (file) {
        http.writeToStream(&file);
        file.close();
        Serial.println("MP3 saved");
      } else {
        Serial.println("Failed to open file for writing");
      }
    } else {
    Serial.print("Error on sending POST: ");
    Serial.println(httpResponseCode);
  }
    audio.connecttoFS(LittleFS, "/response.mp3");
  }
}

void generate_wav_header(uint8_t *wav_header, uint32_t wav_size, uint32_t sample_rate)
{
  uint32_t file_size = wav_size + WAV_HEADER_SIZE - 8;
  uint32_t byte_rate = SAMPLE_RATE * SAMPLE_BITS / 8;
  const uint8_t set_wav_header[] = {
    'R', 'I', 'F', 'F', // ChunkID
    file_size, file_size >> 8, file_size >> 16, file_size >> 24, // ChunkSize
    'W', 'A', 'V', 'E', // Format
    'f', 'm', 't', ' ', // Subchunk1ID
    0x10, 0x00, 0x00, 0x00, // Subchunk1Size (16 for PCM)
    0x01, 0x00, // AudioFormat (1 for PCM)
    0x01, 0x00, // NumChannels (1 channel)
    sample_rate, sample_rate >> 8, sample_rate >> 16, sample_rate >> 24, // SampleRate
    byte_rate, byte_rate >> 8, byte_rate >> 16, byte_rate >> 24, // ByteRate
    0x02, 0x00, // BlockAlign
    0x10, 0x00, // BitsPerSample (16 bits)
    'd', 'a', 't', 'a', // Subchunk2ID
    wav_size, wav_size >> 8, wav_size >> 16, wav_size >> 24, // Subchunk2Size
  };
  memcpy(wav_header, set_wav_header, sizeof(set_wav_header));
}` 

The latency is still quite bad, and I hope that I find a good TTS that support the languages I need and streaming in correct format.

1 Like